

ENGRAM

Encoding Graphical Representations of Activated Memories (ENGRAM)
is an open source Python package
for developing cognitive neural prostheses.

[image: PyPI project] [https://pypi.org/project/engram/] [image: GitHub source code] [https://github.com/garrettmflynn/engram] [image: Documentation status] [https://readthedocs.org/projects/engram] [image: Travis build status] [https://travis-ci.com/github/GarrettMFlynn/ENGRAM] [image: License] [https://www.gnu.org/licenses/gpl-3.0]

Getting Started

Installation

Get ENGRAM from pip:

pip install engram

Requirements

	Python 3.7

	Neo

	Tensorflow (must install manually)

	Numpy

	Scipy

	Visbrain

Key Features

	Convert electrophysiology data from multiple brain regions into Engrams using engram.declarative

	Model multi-channel electrophysiology recordings using multiple machine learning techniques (i.e. MIMO, CNN, RNN, etc) using engram.procedural

	Visualize multi-input multi-output (MIMO) modeling of electrophysiology recordings using engram.episodic

	Grow artificial connections between functionally connected neurons

	Online data processing for OpenBCI headsets using engram.working

A Gentle Introduction to Neural Prostheses

	Introduction

	This section will acquaint readers with concrete use cases
of neural prostheses.

	ENGRAM: The Tool

	This section will detail the background and features of ENGRAM.

	How to Build a Memory Prosthesis

	This section is an extensive walkthrough of how to build a memory prosthesis:
a specific application of cortical prostheses.

	Conclusion

	This section will synthesize what we’ve learned into projections for the
future of neural engineering.

	Additional Resources

	This section gives additional resources for the curious to explore.

[image: _images/neurons.gif]

Introduction

Our minds function best unconsciously. Only when we become conscious,
however, can we take ownership of their processes —– and control them.

“Dementia is troubling because, at the same time as it erodes someone’s memory,
it also eats away at th[e] capacity to create shared meaning. If someone cannot
remember not just where the milk bottle goes, but what a milk bottle is for,
then the shared pre-suppositions on which communication, meaning, and identity
depend become badly strained [Leadbeater2015].

Dr. Pauley is a dementia neurologist treating patients with
anterograde amnesia (the inability to form new memories) as
a result of Alzheimer’s disease (AD), traumatic brain injury (TBI),
and stroke.

Entry Vignette

To provide the reader with an inviting Introduction
to the feel of the context in which the case takes place

Characters

The plan to provide narrative flow from the perspective of the user
1. “Dr. Pauley”: Dementia neurologist confronting
concrete cases with new tools and unprecedented ethics.
2. Me: Addressed in asides to show my own growth
- Impetus: Neuromancer. To walk upon an electronic ground.
- Ungeneralized Idea: Cognitive states (epi./phen.) are upheld by multiscale neural activity
- Generalized Idea: Time and space change, but the ground retains memory.
3. The CNE: Theodore Berger, Dong Song, Xiwei She
4. The Entrepreneurs:Bryan Johnson, Elon Musk
5. The Visionaries: Ed Boyden, Rajesh Rao
6. The Affected:Those with dementia
7. The Practiced:Epilepsy neurologists who already use RNS devices
8. The Concerned: FDA (regulators) and INS (ethicists)

An Introduction

To familiarize the reader with the central features
including rationale and research procedures

An Extensive Narrative Description

To of the case(s) and its context,
which may involve historical or organizational information important for understanding the case

The Computational Basis of Memory Encoding
Engrams are memory codes stored someplace else than the hippocampus.

Draw from Additional Data Sources

Integrate with the researcher’s own interpretations
of the issues and both confirming and disproving evidence are presented followed by the
presentation of the overall case assertions

A Closing Vignette

As a way of cautoning the reader to the specific case context
saying “I like to close on an experiential note, reminding the reader that this report
is just one person’s encounter with a complex case”

ENGRAM: The Tool

Definitions

Graphical Representations

Activated Memories

Origins and Early Visions

Theodore Berger

CNE
From rats to primates to humans

What is a Cortical Prosthesis? The General Architecture
Replacement parts for the brain must be
(1) truly biomimetic,
(2) network models,
(3) bidirectional, and
(4) adaptive, both to individual patients and their disease progression [Berger2001].

The core concepts & underlying technologies of our lab (ML/NC/CL-DBS)

Berger had the vision

Song had the math

You must outline the end-user

Ed Boyden

Neural Coprocessors

Rajesh Rao

BTBI

Core Features

Data Containers

ID: All data from a single individual
- Bin: Binary data
- Cont: Continuous data
- Events: Event data

Signal Comparison Module

For use comparing (1) within individuals (i.e. between channels)
or between multiple individuals
- Rats vs humans signal quality

Mathematical Modeling Techniques

Minimal Dependencies
- Classic Multi-Input Multi-Output (MIMO) Modeling
- Classic Memory Decoding (An L1-regularized logistic regression model)
- Closed Loop Hippocampal Prosthesis

Integration with Other Software Packages

Tensorflow
- Deep MIMO and MD Models

Vispy/Visbrain
- Novel visualization techniques

Brainflow
- Online analysis of OpenBCI streams

ROOTS
- Realistic neural growth between functionally connected sources

Ethical Considerations

Coming soon…

Note

Ethical concerns with neural prostheses should differ considerably from
DBS, aDBS, and clDBS.
This paper builds on existing models and literature
on implantable neurological devices to distill unique ethical concerns
associated with the design, development, and implementation of neural prostheses.
In doing so, we hope that the resulting recommendations will be of use
to guide this emerging field of neural engineering as it matures.

For instance, a recent review of the ethical issues related to neuroprosthetics,
Walter Glannon questions whether a hippocampal prosthesis could be integrated
into the brain’s memory circuits to maintain important aspects of
autobiographical memory, such as the interaction between emotional
and episodic memory, selective meaning attribution, and place cell function
(Glannon, 2016).
In reference to case of neurodegenerative diseases such as Alzheimer’s disease,
Fabrice Jotterand has also pointed out that restoring psychological continuity
(i.e. memory encoding) to patients would not repair the memories lost to
neurodegeneration—-and that clinicians have an obligation to help
restore the integrity of the patient’s personal identity through a
relational narrative with past events where memory had failed (Jotterand, 2019).
As more generalizable conclusions are drawn about neural prostheses as a whole,
however, a deeper understanding of the core technology behind these devices
will be increasingly beneficial. Glannon: “A person with anterograde
or retrograde amnesia for many years might have difficulty adjusting
cognitively and emotionally to what could be a substantial change
in the content of his mental states” (Glannon 2019, 164)].

In order to effectively design devices that intend to benefit disabled people,
researchers must, as a matter of justice,
begin to pay close attention to the actual needs and desires of their end-users
(Goering & Klein, 2019).
And what aspects of neural prostheses can UCD affect? [

Consider the following:
1. Identification of end users
2. Determination of timing and responsibility for end user engagement
3. Assessment of the significance of personal interactions with end users
4. Comparison of methods for obtaining end user views
Principled considerations:
1. Specification of the values underlying BCI research (e.g., sophistication vs. accessibility)
2. Reflection on the ethical reasons to engage end user perspectives
(Sullivan et al., 2018)]
In order to be most effective, qualitative instruments
should be used to account for potential phenomenological changes
resulting from implanted devices,
as well as patient preference information
to inform later risk-benefit assessment
(FDA, 2016; Gilbert et al., 2019).

In such cases, the role of scientists, clinicians, and engineers
in risk assessment is to estimate the probability of a beneficial
or adverse event based on data provided by sponsors
or available in the published literature—-but patient input
is what improves our estimates on the weight or importance of an event
(Benz and Civillico, 2017).

How to Build a Memory Prosthesis

Coming soon…

Conclusion

A New Era of Open-Source Neuroscience

Coming soon…

Registries + Standardization: The Need for Speed

Coming soon…

Additional Resources

	CLARITY [https://www.gnu.org/licenses/gpl-3.0https://www.youtube.com/watch?v=c-NMfp13Uug] Technique (Karl Diesseroth)

Elephant [https://elephant.readthedocs.io/en/latest/] (Electrophysiology Analysis Toolkit) is an
emerging open-source, community centered library
for the analysis of electrophysiological data
in the Python programming language.

Neo [https://github.com/NeuralEnsemble/python-neo] is a Python package for working with electrophysiology data in Python,
together with support for reading a wide range of neurophysiology file formats,
including Spike2, NeuroExplorer, AlphaOmega, Axon, Blackrock, Plexon, Tdt,
and support for writing to a subset of these formats
plus non-proprietary formats including HDF5.
[Garcia2014]

Neurotic [https://github.com/jpgill86/neurotic] is an app for Windows, macOS, and Linux that allows you to
easily review and annotate your electrophysiology data and simultaneously
captured video.

Ephyviewer [https://github.com/NeuralEnsemble/ephyviewer] is a Python library based on pyqtgraph
for building custom viewers for electrophysiological signals,
video, events, epochs, spike trains,
data tables, and time-frequency representations of signals.

EEGLearn [https://github.com/pbashivan] is a set of functions for supervised feature learning/classification
of mental states from EEG based on “EEG images” idea.
[Bashivan2016]

Wagner Lab [https://github.com/WagnerLabPapers] is a memory lab at Stanford University that releases all of their
code with extensive documentation
and enough functionality to reproduce publication results.
[Gagnon2018]
[Waskom2017]

Glossary

E

Echphory

Engraphy

R

Redintegration

References

	BRYC16

	Pouya Bashivan, Irina Rish, Mohammed Yeasin, and Noel Codella. Learning representations from EEG with deep recurrent-convolutional neural networks. In 4th International Conference on Learning Representations, ICLR 2016 - Conference Track Proceedings. 2016. arXiv:1511.06448 [https://arxiv.org/abs/1511.06448].

	BBB+01

	T W Berger, M Baudry, R D Brinton, J S Liaw, V Z Marmarelis, and A Y Park. Brain-implantable biomimetic electronics as the next era in neural prosthetics. Proceedings of the. Ieee, 89(7):993–1012, 2001.

	GKM+18

	G. Gagnon, S. Kumar, J. R. Maltais, A. N. Voineskos, B. H. Mulsant, and T. K. Rajji. Superior memory performance in healthy individuals with subclinical psychotic symptoms but without genetic load for schizophrenia. Schizophrenia Research: Cognition, 2018. doi:10.1016/j.scog.2018.06.001 [https://doi.org/10.1016/j.scog.2018.06.001].

	GGJ+14

	Samuel Garcia, Domenico Guarino, Florent Jaillet, Todd Jennings, Robert Pröpper, Philipp L. Rautenberg, Chris C. Rodgers, Andrey Sobolev, Thomas Wachtler, Pierre Yger, and Andrew P. Davison. Neo: An object model for handling electrophysiology data in multiple formats. Frontiers in Neuroinformatics, 2014. doi:10.3389/fninf.2014.00010 [https://doi.org/10.3389/fninf.2014.00010].

	Lea15

	Charles Leadbeater. The Disremembered. 2015. URL: https://aeon.co/essays/if-your-memory-fails-are-you-still-the-same-person.

	WFW17

	Michael L. Waskom, Michael C. Frank, and Anthony D. Wagner. Adaptive Engagement of Cognitive Control in Context-Dependent Decision Making. Cerebral cortex (New York, N.Y. : 1991), 2017. doi:10.1093/cercor/bhv333 [https://doi.org/10.1093/cercor/bhv333].

API Reference Guide

	engram.declarative package
	Submodules

	engram.declarative.engram module

	engram.declarative.id module

	engram.declarative.mneme module

	Module contents

	engram.procedural package
	Submodules

	engram.procedural.analyze module

	engram.procedural.data module

	engram.procedural.events module

	engram.procedural.features module

	engram.procedural.filters module

	engram.procedural.missingdata module

	engram.procedural.models module

	engram.procedural.neo_handler module

	engram.procedural.predict module

	engram.procedural.train module

	Module contents

	engram.episodic package
	Submodules

	engram.episodic.classic module

	engram.episodic.graphics module

	engram.episodic.shaders module

	engram.episodic.terminal module

	Module contents

	engram.working package
	Submodules

	engram.working.loggers module

	engram.working.streams module

	Module contents

Indices and tables

	Index

	Module Index

	Search Page

engram.declarative package

Submodules

engram.declarative.engram module

This module defines Engram, the container for all offline analysis.
It contains many Mneme objects that are:

	Labeled with their region of origin

	Organized into trial & channel subsections.

Each Engram has a unique event tag.

	
class engram.declarative.engram.Engram(engram, id='User', tag='Unspecified')

	Bases: object

engram.declarative.id module

This module defines ID, the main container gathering all the data,
whether discrete or continous, for a given recording session.
It is the container for the Engram class.

	
class engram.declarative.id.ID(name=None, extension=None, project=None, settings=None, load=False)

	Bases: object

Main container gathering all the data, whether discrete or continous, for a
given recording session.

	
episode(shader='engram')

	

	
load(datadir='users')

	

	
loadEvents(session=None, extension='.nex')

	

	
loadTrace(method='name', session=None, manual=None, regions=None)

	

	
model(method='channels', model_type='CNN')

	

	
preprocess(settings=None)

	

	
save(datadir='users')

	

engram.declarative.mneme module

This module defines Mneme, our smallest unit of memory.

It is the container for standardized features associated with an event.

	
class engram.declarative.mneme.Mneme(id, raw=None, tag=None, settings=None)

	Bases: object

Module contents

:mod:’engram.declarative’ provides classes for containing neurophysiology recordings and derivative features.

Classes from :mod:’engram.declarative’ return nested data structures containing one or more classes from this module.

Classes:

	
class engram.declarative.ID(name=None, extension=None, project=None, settings=None, load=False)

	Main container gathering all the data, whether discrete or continous, for a
given recording session.

	
class engram.declarative.Engram(engram, id='User', tag='Unspecified')

	

	
class engram.declarative.Mneme(id, raw=None, tag=None, settings=None)

	

engram.procedural package

Submodules

engram.procedural.analyze module

engram.procedural.data module

	
engram.procedural.data.events(feature, time, settings, prev_len)

	

	
engram.procedural.data.select(feature, time, settings, prev_len=None)

	

	
engram.procedural.data.trials()

	

engram.procedural.events module

	
engram.procedural.events.Neurogenesis()

	

	
engram.procedural.events.RAM(reader)

	

	
engram.procedural.events.select(name, reader)

	

engram.procedural.features module

	
engram.procedural.features.LFP(trace, settings)

	

	
engram.procedural.features.STFT(trace, settings)

	

	
engram.procedural.features.multiscale(trace, settings)

	

	
engram.procedural.features.normalize(data, settings)

	

	
engram.procedural.features.select(name, trace, settings)

	

	
engram.procedural.features.spikes(trace, settings)

	

engram.procedural.filters module

	
engram.procedural.filters.butter_bandpass(lowcut, highcut, fs, order=5)

	

	
engram.procedural.filters.butter_bandpass_filter(data, lowcut, highcut, fs, order=5)

	

	
engram.procedural.filters.butter_lowpass(cutoff, fs, order=5)

	

	
engram.procedural.filters.butter_lowpass_filter(data, cutoff, fs, order=5)

	

	
engram.procedural.filters.select(filter, data, min=0, max=None, fs=2000, order=5)

	

engram.procedural.missingdata module

	
engram.procedural.missingdata.interpolate_nans(y)

	Helper to handle indices and logical indices of NaNs.

	Input:

	
	y, 1d numpy array with possible NaNs

	Output:

	
	nans, logical indices of NaNs

	index, a function, with signature indices= index(logical_indices),
to convert logical indices of NaNs to ‘equivalent’ indices

	Example:

	>>> # linear interpolation of NaNs
>>> nans, x= nan_helper(y)
>>> y[nans]= np.interp(x(nans), x(~nans), y[~nans])

engram.procedural.models module

	
engram.procedural.models.cnn(shape)

	

	
engram.procedural.models.custom(shape)

	

	
engram.procedural.models.lstm()

	

	
engram.procedural.models.md(shape)

	

	
engram.procedural.models.mimo(shape)

	

	
engram.procedural.models.select(model, shape)

	

engram.procedural.neo_handler module

	
engram.procedural.neo_handler.unpackNeo(reader)

	

engram.procedural.predict module

	
engram.procedural.predict.predict(model=None, mneme=None)

	

engram.procedural.train module

	
engram.procedural.train.create_dataset(features=None, labels_for_categories=None)

	Load and parse dataset.
Args:

filenames: list of image paths
labels: numpy array of shape (BATCH_SIZE, N_LABELS)
is_training: boolean to indicate training mode

	
engram.procedural.train.get_data(features=None, labels_for_categories=None)

	

	
engram.procedural.train.train(model_type='CNN', in_matrix=None, labels=None)

	

Module contents

:mod:’engram.procedural’ provides functions for processing Engram data structures
and encoding them into models

engram.episodic package

Submodules

engram.episodic.classic module

	
engram.episodic.classic.analog_signal(x=None, y=None)

	

	
engram.episodic.classic.spectrum(x=None, y=None, z=None, voltage_units='mV', resIncrease=8, clims=(-5, 5))

	

engram.episodic.graphics module

engram.episodic.shaders module

	
class engram.episodic.shaders.Galaxy(n=20000)

	Bases: object

Galaxy simulation using the density wave theory

	
eccentricity(r)

	

	
reset(rad, radCore, deltaAng, ex1, ex2, sigma, velInner, velOuter)

	

	
update(timestep=100000)

	Update simulation

	
engram.episodic.shaders.atom()

	

	
engram.episodic.shaders.bb_spectrum(wavelength, bbTemp=5000)

	Calculate, by Planck’s radiation law, the emittance of a black body
of temperature bbTemp at the given wavelength (in metres). */

	
engram.episodic.shaders.boids()

	Demonstration of boids simulation. Boids is an artificial life
program, developed by Craig Reynolds in 1986, which simulates the
flocking behaviour of birds.
Based on code from glumpy by Nicolas Rougier.

	
engram.episodic.shaders.brain()

	3D brain mesh viewer.

	
engram.episodic.shaders.constrain_rgb(r, g, b)

	If the requested RGB shade contains a negative weight for
one of the primaries, it lies outside the colour gamut
accessible from the given triple of primaries. Desaturate
it by adding white, equal quantities of R, G, and B, enough
to make RGB all positive. The function returns 1 if the
components were modified, zero otherwise.

	
engram.episodic.shaders.engram(regions, spikes, assignments)

	

	
engram.episodic.shaders.fireworks()

	Example demonstrating simulation of fireworks using point sprites.
(adapted from the “OpenGL ES 2.0 Programming Guide”)

This example demonstrates a series of explosions that last one second. The
visualization during the explosion is highly optimized using a Vertex Buffer
Object (VBO). After each explosion, vertex data for the next explosion are
calculated, such that each explostion is unique.

	
engram.episodic.shaders.fluid()

	

	
engram.episodic.shaders.fun()

	

	
engram.episodic.shaders.galaxy()

	

	
engram.episodic.shaders.gamma_correct(cs, c)

	Transform linear RGB values to nonlinear RGB values. Rec.
709 is ITU-R Recommendation BT. 709 (1990) ``Basic
Parameter Values for the HDTV Standard for the Studio and
for International Programme Exchange’‘, formerly CCIR Rec.
709. For details see

http://www.poynton.com/ColorFAQ.html
http://www.poynton.com/GammaFAQ.html

	
engram.episodic.shaders.gamma_correct_rgb(cs, r, g, b)

	

	
engram.episodic.shaders.graph()

	Plot clusters of data points and a graph of connections

	
engram.episodic.shaders.inside_gamut(r, g, b)

	Test whether a requested colour is within the gamut
achievable with the primaries of the current colour
system. This amounts simply to testing whether all the
primary weights are non-negative. */

	
engram.episodic.shaders.interact()

	Test the fps capability of Vispy with meshdata primitive

	
engram.episodic.shaders.norm_rgb(r, g, b)

	Normalise RGB components so the most intense (unless all
are zero) has a value of 1.

	
engram.episodic.shaders.oscilloscope()

	An oscilloscope, spectrum analyzer, and spectrogram.

This demo uses pyaudio to record data from the microphone. If pyaudio is not
available, then a signal will be generated instead.

	
engram.episodic.shaders.realtimesignals()

	Multiple real-time digital signals with GLSL-based clipping.

	
engram.episodic.shaders.sandbox()

	A GLSL sandbox application based on the spinning cube. Requires PySide
or PyQt5.

	
engram.episodic.shaders.select(shader='atom', regions=None, data=None, assignments=None)

	

	
engram.episodic.shaders.shadertoy()

	

	
engram.episodic.shaders.spectrogram(data, settings)

	

	
engram.episodic.shaders.spectrum_to_xyz(spec_intens, temp)

	Calculate the CIE X, Y, and Z coordinates corresponding to
a light source with spectral distribution given by the
function SPEC_INTENS, which is called with a series of
wavelengths between 380 and 780 nm (the argument is
expressed in meters), which returns emittance at that
wavelength in arbitrary units. The chromaticity
coordinates of the spectrum are returned in the x, y, and z
arguments which respect the identity:

x + y + z = 1.

CIE colour matching functions xBar, yBar, and zBar for
wavelengths from 380 through 780 nanometers, every 5
nanometers. For a wavelength lambda in this range:

cie_colour_match[(lambda - 380) / 5][0] = xBar
cie_colour_match[(lambda - 380) / 5][1] = yBar
cie_colour_match[(lambda - 380) / 5][2] = zBar

AH Note 2011: This next bit is kind of irrelevant on modern
hardware. Unless you are desperate for speed.
In which case don’t use the Python version!

To save memory, this table can be declared as floats
rather than doubles; (IEEE) float has enough
significant bits to represent the values. It’s declared
as a double here to avoid warnings about “conversion
between floating-point types” from certain persnickety
compilers.

	
engram.episodic.shaders.upvp_to_xy(up, vp)

	

	
engram.episodic.shaders.xy_toupvp(xc, yc)

	

	
engram.episodic.shaders.xyz_to_rgb(cs, xc, yc, zc)

	Given an additive tricolour system CS, defined by the CIE x
and y chromaticities of its three primaries (z is derived
trivially as 1-(x+y)), and a desired chromaticity (XC, YC,
ZC) in CIE space, determine the contribution of each
primary in a linear combination which sums to the desired
chromaticity. If the requested chromaticity falls outside
the Maxwell triangle (colour gamut) formed by the three
primaries, one of the r, g, or b weights will be negative.

Caller can use constrain_rgb() to desaturate an
outside-gamut colour to the closest representation within
the available gamut and/or norm_rgb to normalise the RGB
components so the largest nonzero component has value 1.

engram.episodic.terminal module

	
engram.episodic.terminal.endProgress()

	

	
engram.episodic.terminal.progress(x)

	

	
engram.episodic.terminal.startProgress(title)

	

Module contents

:mod:’engram.episodic’ provides functions for visualizing Engrams

engram.working package

Submodules

engram.working.loggers module

engram.working.streams module

Module contents

Contributing

Any feedback is gladly received and highly appreciated!
ENGRAM is a community project, and all contributions are welcomed.

Resources

	Developers’ guide

Authors and Contributors

Garrett Flynn

University of Southern California

Important

Garrett’s senior thesis project was to build out ENGRAM
as an open source project.
Feel free to reach out to him
at garrett@garrettflynn.com
with any questions.

If we’ve somehow missed you off the list we’re very sorry - please let us know!

Developers’ guide

These instructions are for developing on a Unix-like platform, e.g. Linux or
macOS, with the bash shell. If you develop on Windows, please get in touch.

Mailing lists

There is not currently a platform for general discussion of ENGRAM development.

Discussion of issues specific to a particular ticket in the issue tracker
should take place on the tracker.

Using the issue tracker

If you find a bug in ENGRAM, please create a new ticket on the issue tracker [https://github.com/garrettmflynn/engram/issues],
setting the type to “defect”.
Choose a name that is as specific as possible to the problem you’ve found, and
in the description give as much information as you think is necessary to
recreate the problem. The best way to do this is to create the shortest
possible Python script that demonstrates the problem, and attach the file to
the ticket.

If you have an idea for an improvement to ENGRAM, create a ticket with type
“enhancement”. If you already have an implementation of the idea, create a
patch (see below) and attach it to the ticket.

To keep track of changes to the code and to tickets, you can register for
a GitHub account and then set to watch the repository at GitHub Repository [https://github.com/garrettmflynn/engram/]
(see https://help.github.com/en/articles/watching-and-unwatching-repositories).

Requirements

Coming Soon

We strongly recommend you develop within a virtual environment (from virtualenv, venv or conda).
It is best to have at least one virtual environment with Python 2.7 and one with Python 3.x.

Getting the source code

We use the Git version control system. The best way to contribute is through
GitHub [https://github.com]. You will first need a GitHub account, and you should then fork the
repository at GitHub Repository [https://github.com/garrettmflynn/engram/]
(see http://help.github.com/en/articles/fork-a-repo).

To get a local copy of the repository:

$ cd /some/directory
$ git clone git@github.com:<username>/engram.git

Now you need to make sure that the engram package is on your PYTHONPATH.
You can do this either by installing ENGRAM:

$ cd engram
$ python setup.py install
$ python3 setup.py install

(if you do this, you will have to re-run setup.py install any time you make
changes to the code) or by creating symbolic links from somewhere on your
PYTHONPATH, for example:

$ ln -s engram/engram
$ export PYTHONPATH=/some/directory:${PYTHONPATH}

An alternate solution is to install Engram with the develop option, this avoids
reinstalling when there are changes in the code:

$ sudo python setup.py develop

or using the “-e” option to pip:

$ pip install -e engram

To update to the latest version from the repository:

$ git pull

Running the test suite

Before you make any changes, run the test suite to make sure all the tests pass
on your system:

$ cd engram/test

With Python 2.7 or 3.x:

$ python -m unittest discover
$ python3 -m unittest discover

If you have nose installed:

$ nosetests

At the end, if you see “OK”, then all the tests
passed (or were skipped because certain dependencies are not installed),
otherwise it will report on tests that failed or produced errors.

To run tests from an individual file:

$ python test_id.py
$ python3 test_id.py

Writing tests

You should try to write automated tests for any new code that you add. If you
have found a bug and want to fix it, first write a test that isolates the bug
(and that therefore fails with the existing codebase). Then apply your fix and
check that the test now passes.

To see how well the tests cover the code base, run:

$ nosetests --with-coverage --cover-package=engram --cover-erase

Working on the documentation

All modules, classes, functions, and methods (including private and subclassed
builtin methods) should have docstrings.
Please see PEP257 [https://www.python.org/dev/peps/pep-0257/] for a description of docstring conventions.

Module docstrings should explain briefly what functions or classes are present.
Detailed descriptions can be left for the docstrings of the respective
functions or classes. Private functions do not need to be explained here.

Class docstrings should include an explanation of the purpose of the class
and, when applicable, how it relates to standard neuroscientific data.
They should also include at least one example, which should be written
so it can be run as-is from a clean newly-started Python interactive session
(that means all imports should be included). Finally, they should include
a list of all arguments, attributes, and properties, with explanations.
Properties that return data calculated from other data should explain what
calculation is done. A list of methods is not needed, since documentation
will be generated from the method docstrings.

Method and function docstrings should include an explanation for what the
method or function does. If this may not be clear, one or more examples may
be included. Examples that are only a few lines do not need to include
imports or setup, but more complicated examples should have them.

Examples can be tested easily using the iPython %doctest_mode magic. This will
strip >>> and … from the beginning of each line of the example, so the
example can be copied and pasted as-is.

The documentation is written in reStructuredText [http://docutils.sourceforge.net/rst.html], using the Sphinx [http://www.sphinx-doc.org/]
documentation system. Any mention of another ENGRAM module, class, attribute,
method, or function should be properly marked up so automatic
links can be generated.

To build the documentation:

$ cd engram/doc
$ make html

Then open some/directory/engram/doc/build/html/index.html in your browser.

Committing your changes

Once you are happy with your changes, run the test suite again to check
that you have not introduced any new bugs. It is also recommended to check
your code with a code checking program. Then
you can commit them to your local repository:

$ git commit -m 'informative commit message'

If this is your first commit to the project, please add your name and
affiliation/employer to doc/source/authors.rst

You can then push your changes to your online repository on GitHub:

$ git push

Once you think your changes are ready to be included in the main ENGRAM repository,
open a pull request on GitHub
(see https://help.github.com/en/articles/about-pull-requests).

Python version

ENGRAM has only been tested using Python 3.7.

For future reference, Porting to Python 3 [http://python3porting.com/] by Lennart Regebro is an excellent resource.

The most important thing to remember is to run tests with at least one version
of Python 2 and at least one version of Python 3. There is generally no problem
in having multiple versions of Python installed on your computer at once: e.g.,
on Ubuntu Python 2 is available as python and Python 3 as python3, while
on Arch Linux Python 2 is python2 and Python 3 python. See PEP394 [https://www.python.org/dev/peps/pep-0394/] for
more on this. Using virtual environments makes this very straightforward.

Coding standards and style

All code should conform as much as possible to PEP 8 [https://www.python.org/dev/peps/pep-0008/], and should run with
Python 2.7, and 3.5 or newer.

You can use the pycodestyle [https://pypi.org/project/pycodestyle/] program to check the code for PEP 8 conformity.

Please do not use from xyz import *. This is slow, can lead to
conflicts, and makes it difficult for code analysis software.

Making a release

Add a new version file, such as /doc/releases/0.1.0.rst for the release.

First check that the version string (in engram/version.py) is correct.

To build a source package:

$ python setup.py sdist

Tag the release in the Git repository and push it:

$ git tag <version>
$ git push --tags origin
$ git push --tags upstream

To upload the package to PyPI [https://pypi.org] (currently Garrett Flynn has the necessary permissions to do this):

$ twine upload dist/engram-0.X.Y.tar.gz

Release Notes

	engram 0.1.0

engram 0.1.0

?? April 2020

Improvements

	Add continuous integration with Travis CI for automated testing

	Add some tests

	Migrate example data to GIN

Bug fixes

	Raise an exception if a Neo RawIO cannot be found for the data file

Acknowledgements

ENGRAM was developed at Song Lab [https://viterbi.usc.edu/directory/faculty/Song/Dong] for the Restoring Active Memory (RAM) program [https://www.darpa.mil/program/restoring-active-memory],
funded by the Defence Advanced Research Projects Agency (DARPA).

See our Contributing section to get to
know all the wonderful people who’ve contributed directly to ENGRAM!

 Python Module Index

 e

 		 	

 		
 e	

 	[image: -]
 	
 engram	

 	
 	
 engram.declarative	

 	
 	
 engram.declarative.engram	

 	
 	
 engram.declarative.id	

 	
 	
 engram.declarative.mneme	

 	
 	
 engram.episodic	

 	
 	
 engram.episodic.classic	

 	
 	
 engram.episodic.graphics	

 	
 	
 engram.episodic.shaders	

 	
 	
 engram.episodic.terminal	

 	
 	
 engram.procedural	

 	
 	
 engram.procedural.analyze	

 	
 	
 engram.procedural.data	

 	
 	
 engram.procedural.events	

 	
 	
 engram.procedural.features	

 	
 	
 engram.procedural.filters	

 	
 	
 engram.procedural.missingdata	

 	
 	
 engram.procedural.models	

 	
 	
 engram.procedural.neo_handler	

 	
 	
 engram.procedural.predict	

 	
 	
 engram.procedural.train	

 	
 	
 engram.test	

 	
 	
 engram.test.test_declarative	

 	
 	
 engram.test.test_episodic	

 	
 	
 engram.test.test_procedural	

 	
 	
 engram.test.test_working	

 	
 	
 engram.version	

Index

 A
 | B
 | C
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | X

A

 	
 	analog_signal() (in module engram.episodic.classic)

 	
 	atom() (in module engram.episodic.shaders)

B

 	
 	bb_spectrum() (in module engram.episodic.shaders)

 	boids() (in module engram.episodic.shaders)

 	brain() (in module engram.episodic.shaders)

 	
 	butter_bandpass() (in module engram.procedural.filters)

 	butter_bandpass_filter() (in module engram.procedural.filters)

 	butter_lowpass() (in module engram.procedural.filters)

 	butter_lowpass_filter() (in module engram.procedural.filters)

C

 	
 	cnn() (in module engram.procedural.models)

 	constrain_rgb() (in module engram.episodic.shaders)

 	
 	create_dataset() (in module engram.procedural.train)

 	custom() (in module engram.procedural.models)

E

 	
 	eccentricity() (engram.episodic.shaders.Galaxy method)

 	endProgress() (in module engram.episodic.terminal)

 	Engram (class in engram.declarative)

 	(class in engram.declarative.engram)

 	engram (module)

 	engram() (in module engram.episodic.shaders)

 	engram.declarative (module)

 	engram.declarative.engram (module)

 	engram.declarative.id (module)

 	engram.declarative.mneme (module)

 	engram.episodic (module)

 	engram.episodic.classic (module)

 	engram.episodic.graphics (module)

 	engram.episodic.shaders (module)

 	engram.episodic.terminal (module)

 	engram.procedural (module)

 	engram.procedural.analyze (module)

 	
 	engram.procedural.data (module)

 	engram.procedural.events (module)

 	engram.procedural.features (module)

 	engram.procedural.filters (module)

 	engram.procedural.missingdata (module)

 	engram.procedural.models (module)

 	engram.procedural.neo_handler (module)

 	engram.procedural.predict (module)

 	engram.procedural.train (module)

 	engram.test (module)

 	engram.test.test_declarative (module)

 	engram.test.test_episodic (module)

 	engram.test.test_procedural (module)

 	engram.test.test_working (module)

 	engram.version (module)

 	episode() (engram.declarative.id.ID method)

 	events() (in module engram.procedural.data)

F

 	
 	fireworks() (in module engram.episodic.shaders)

 	
 	fluid() (in module engram.episodic.shaders)

 	fun() (in module engram.episodic.shaders)

G

 	
 	Galaxy (class in engram.episodic.shaders)

 	galaxy() (in module engram.episodic.shaders)

 	gamma_correct() (in module engram.episodic.shaders)

 	
 	gamma_correct_rgb() (in module engram.episodic.shaders)

 	get_data() (in module engram.procedural.train)

 	graph() (in module engram.episodic.shaders)

I

 	
 	ID (class in engram.declarative)

 	(class in engram.declarative.id)

 	
 	inside_gamut() (in module engram.episodic.shaders)

 	interact() (in module engram.episodic.shaders)

 	interpolate_nans() (in module engram.procedural.missingdata)

L

 	
 	LFP() (in module engram.procedural.features)

 	load() (engram.declarative.id.ID method)

 	
 	loadEvents() (engram.declarative.id.ID method)

 	loadTrace() (engram.declarative.id.ID method)

 	lstm() (in module engram.procedural.models)

M

 	
 	md() (in module engram.procedural.models)

 	mimo() (in module engram.procedural.models)

 	Mneme (class in engram.declarative)

 	(class in engram.declarative.mneme)

 	
 	model() (engram.declarative.id.ID method)

 	multiscale() (in module engram.procedural.features)

N

 	
 	Neurogenesis() (in module engram.procedural.events)

 	
 	norm_rgb() (in module engram.episodic.shaders)

 	normalize() (in module engram.procedural.features)

O

 	
 	oscilloscope() (in module engram.episodic.shaders)

P

 	
 	predict() (in module engram.procedural.predict)

 	
 	preprocess() (engram.declarative.id.ID method)

 	progress() (in module engram.episodic.terminal)

R

 	
 	RAM() (in module engram.procedural.events)

 	
 	realtimesignals() (in module engram.episodic.shaders)

 	reset() (engram.episodic.shaders.Galaxy method)

S

 	
 	sandbox() (in module engram.episodic.shaders)

 	save() (engram.declarative.id.ID method)

 	select() (in module engram.episodic.shaders)

 	(in module engram.procedural.data)

 	(in module engram.procedural.events)

 	(in module engram.procedural.features)

 	(in module engram.procedural.filters)

 	(in module engram.procedural.models)

 	
 	shadertoy() (in module engram.episodic.shaders)

 	spectrogram() (in module engram.episodic.shaders)

 	spectrum() (in module engram.episodic.classic)

 	spectrum_to_xyz() (in module engram.episodic.shaders)

 	spikes() (in module engram.procedural.features)

 	startProgress() (in module engram.episodic.terminal)

 	STFT() (in module engram.procedural.features)

T

 	
 	train() (in module engram.procedural.train)

 	
 	trials() (in module engram.procedural.data)

U

 	
 	unpackNeo() (in module engram.procedural.neo_handler)

 	
 	update() (engram.episodic.shaders.Galaxy method)

 	upvp_to_xy() (in module engram.episodic.shaders)

X

 	
 	xy_toupvp() (in module engram.episodic.shaders)

 	
 	xyz_to_rgb() (in module engram.episodic.shaders)

engram.test package

Submodules

engram.test.test_declarative module

engram.test.test_episodic module

engram.test.test_procedural module

engram.test.test_working module

Module contents

Tests for the engram package

engram package

Subpackages

	engram.declarative package
	Submodules

	engram.declarative.engram module

	engram.declarative.id module

	engram.declarative.mneme module

	Module contents

	engram.episodic package
	Submodules

	engram.episodic.classic module

	engram.episodic.graphics module

	engram.episodic.shaders module

	engram.episodic.terminal module

	Module contents

	engram.procedural package
	Submodules

	engram.procedural.analyze module

	engram.procedural.data module

	engram.procedural.events module

	engram.procedural.features module

	engram.procedural.filters module

	engram.procedural.missingdata module

	engram.procedural.models module

	engram.procedural.neo_handler module

	engram.procedural.predict module

	engram.procedural.train module

	Module contents

	engram.test package
	Submodules

	engram.test.test_declarative module

	engram.test.test_episodic module

	engram.test.test_procedural module

	engram.test.test_working module

	Module contents

	engram.working package
	Submodules

	engram.working.loggers module

	engram.working.streams module

	Module contents

Submodules

engram.version module

Module contents

An open-source Python package for developing cognitive neural prostheses.

engram

	engram package
	Subpackages
	engram.declarative package
	Submodules

	engram.declarative.engram module

	engram.declarative.id module

	engram.declarative.mneme module

	Module contents

	engram.episodic package
	Submodules

	engram.episodic.classic module

	engram.episodic.graphics module

	engram.episodic.shaders module

	engram.episodic.terminal module

	Module contents

	engram.procedural package
	Submodules

	engram.procedural.analyze module

	engram.procedural.data module

	engram.procedural.events module

	engram.procedural.features module

	engram.procedural.filters module

	engram.procedural.missingdata module

	engram.procedural.models module

	engram.procedural.neo_handler module

	engram.procedural.predict module

	engram.procedural.train module

	Module contents

	engram.test package
	Submodules

	engram.test.test_declarative module

	engram.test.test_episodic module

	engram.test.test_procedural module

	engram.test.test_working module

	Module contents

	engram.working package
	Submodules

	engram.working.loggers module

	engram.working.streams module

	Module contents

	Submodules

	engram.version module

	Module contents

 _static/up.png

_static/ajax-loader.gif

_images/neurons.gif
2,

2,

e

t=155.0s

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 ENGRAM

_static/engramlogo.png
ENGRAM

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

